Efficient Pairings Computation on Jacobi Quartic Elliptic Curves
نویسندگان
چکیده
This paper proposes the computation of the Tate pairing, Ate pairing and its variations on the special Jacobi quartic elliptic curve Y 2 = dX +Z. We improve the doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the birational equivalence between Jacobi quartic curves and Weierstrass curves, together with a specific point representation to obtain the best result to date among curves with quartic twists. For the doubling and addition steps in Miller’s algorithm for the computation of the Tate pairing, we obtain a theoretical gain up to 27% and 39%, depending on the embedding degree and the extension field arithmetic, with respect to Weierstrass curves [2] and previous results on Jacobi quartic curves [3]. Furthermore and for the first time, we compute and implement Ate, twisted Ate and optimal pairings on the Jacobi quartic curves. Our results are up to 27% more efficient, comparatively to the case of Weierstrass curves with quartic twists [2].
منابع مشابه
Efficient computation of pairings on Jacobi quartic elliptic curves
This paper proposes the computation of the Tate pairing, Ate pairing and its variations on the special Jacobi quartic elliptic curve Y 2 D dX C Z. We improve the doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the birational equivalence between Jacobi quartic curves and Weierstrass curves, together with a specific point representation to obtain the best res...
متن کاملPairing Computation on Elliptic Curves of Jacobi Quartic Form
This paper proposes explicit formulae for the addition step and doubling step in Miller’s algorithm to compute Tate pairing on Jacobi quartic curves. We present a geometric interpretation of the group law on Jacobi quartic curves, which leads to formulae for Miller’s algorithm. The doubling step formula is competitive with that for Weierstrass curves and Edwards curves. Moreover, by carefully c...
متن کاملEdwards Curves and Extended Jacobi Quartic-Curves for Efficient Support of Elliptic-Curve Cryptosystems in Embedded Systems
The efficient support of cryptographic protocols based on elliptic curves is crucial when embedded processors are adopted as the target hardware platforms. The implementation of Elliptic Curve Cryptography (ECC) offers a variety of design options, mostly covering the specific family of curves and the related coordinate system. At the same time, theory shows that a limited set of solutions can a...
متن کاملJacobi Quartic Curves Revisited
This paper provides new results about efficient arithmetic on (extended) Jacobiquartic form elliptic curves y = dx + 2ax + 1. Recent works have shown thatarithmetic on an elliptic curve in Jacobi quartic form can be performed solidly fasterthan the corresponding operations in Weierstrass form. These proposals use up to 7coordinates to represent a single point. However, fast scal...
متن کاملFaster Pairing Computation on Jacobi Quartic Curves with High-Degree Twists
In this paper, we propose an elaborate geometric approach to explain the group law on Jacobi quartic curves which are seen as the intersection of two quadratic surfaces in space. Using the geometry interpretation we construct the Miller function. Then we present explicit formulae for the addition and doubling steps in Miller’s algorithm to compute Tate pairing on Jacobi quartic curves. Both the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013